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We study the structure and melting of a classical bilayer system of dipoles in a setup where the dipoles are
oriented perpendicular to the planes of the layers and the density of dipoles is the same in each layer. Due to
the anisotropic character of the dipole-dipole interactions, we find that the ground-state configuration is given
by two hexagonal crystals positioned on top of each other, independent of the interlayer spacing and dipolar
density. For large interlayer distances these crystals are independent, while in the opposite limit of small
interlayer distances the system behaves as a two-dimensional crystal of paired dipoles. Within the harmonic
approximation for the phonon excitations, the melting temperature of these crystalline configurations displays
a nonmonotonic dependence on the interlayer distance, which is associated with a re-entrant melting behavior
in the form of solid-liquid-solid-liquid transitions at fixed temperature.
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I. INTRODUCTION

The realization of a degenerate dipolar gas of 52Cr
atoms1,2 and the experimental progress in the realization of
cold molecular ensembles3 have spurred interest in the prop-
erties of particles with large dipole moments4–12 in atomic
and molecular setups.13 In particular, the strong anisotropic
dipole-dipole interactions induced in ground-state polar mol-
ecules by external electric fields hold promises for applica-
tions ranging from the realization of novel strongly corre-
lated phases14–34 to quantum simulations35–37 and quantum
computing.33,38–42

In Refs. 12 and 29 it was shown that a collisionally stable
two-dimensional �2D� setup where particles interact via
purely repulsive effective dipole-dipole interactions can be
realized by polarizing the molecules using an external elec-
tric field, thus inducing strong dipole-dipole interactions, and
by confining the motion of the particles to a 2D geometry,
e.g., by trapping them into a single well of a deep optical
lattice directed parallel to the electric field. The low-energy
phase of an ensemble of interacting bosonic polar molecules
is then a superfluid or a self-assembled crystal for compara-
tively weak or strong interactions, respectively, where the
strength of the interactions can be modified by varying the
intensity of the polarizing electric field. The crystal is a two-
dimensional hexagonal lattice structure with quantum dy-
namics given by longitudinal- and transverse-acoustic
phonons. Contrary to familiar Wigner crystals induced by
strong Coulomb interactions,43 dipolar crystals emerge at
large densities, where dipole-dipole interactions dominate
over the kinetic energy of the particles. This scenario for the
realization of 2D crystals can be implemented using closed-
shell polar molecules as, e.g., SrO or RbCs.

While the scenario above is realized by populating a
single well of the confining optical lattice, in general it will
be possible to populate more than one well of the lattice. It is

thus natural to consider the phases of bi- and multilayer con-
figurations of classical and quantum dipoles. As a first step,
in this work we focus on the crystalline structures of a bi-
layer system of classical dipoles. The analogous quantum
problem will be the subject of a separate study.

In this paper we consider a system of 2N dipoles confined
into two parallel two-dimensional planes along the �x ,y� di-
rections and separated by an interlayer spacing l along z.
Each plane has the same number of dipoles, N, with their
dipole moment d=dez aligned perpendicular to the plane; see
Fig. 1�a�. The interactions between two dipoles separated by
r are the dipole-dipole interactions V�r�=d2�1−3z2 /r2� /r3,
where r= �r��0 and z=r ·ez. For our setup this results in the
intralayer interactions being always repulsive, which gives
rise to a hexagonal crystalline structure in each layer. In con-
trast, the interlayer interactions are attractive �repulsive� for
dipoles separated by a distance r��3l �r��3l�; see Fig.
1�a�. As detailed in Secs. II–IV, this anisotropy in the inter-
layer interactions determines that the ground-state configura-
tion of the system is a bilayer crystal comprised of two hex-
agonal crystals stacked on top of each other. In addition, it
gives rise to a nonmonotonic behavior of the dynamic prop-
erties of this bilayer crystal �such as the phonon sound ve-
locities and the melting temperature� when increasing the
interlayer distance l while keeping the intralayer densities n
fixed. In particular, within the harmonic approximation for
the phonon excitations, we find that for certain fixed tem-
peratures the system displays a re-entrant melting behavior
in the form of solid-liquid-solid-liquid transitions as a func-
tion of the dimensionless interlayer distance �= l�n. The pic-
ture emerging from these studies is one where for large in-
terlayer separations ��1, the two hexagonal crystals of the
bilayer structure behave as independent crystals, while for
vanishing interlayer separations ��1, they behave as a
single 2D crystal of particles with double mass and double
dipole moment.
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The paper is organized as follows: In Sec. II we introduce
our model and derive expressions for the potential energy in
the form of a rapidly convergent sum obtained via the Ewald
summation method. By comparing the energies of a number
of possible crystal geometries, we determine the structure
and energy of the ground-state and several excited-state con-
figurations. In Sec. III we analyze the dynamic properties
corresponding to these crystalline structures within the har-
monic approximation for the phonon excitations. We discuss
the phonon excitation branches of the ground-state configu-
ration. We find that the dependence of the sound velocities
on the interlayer separation l is nonmonotonic, due to the
anisotropic character of the dipole-dipole interaction. For the
excited states, we assess the stability of the configurations
studied in Sec. II under phonon fluctuations; we find that
several of the excited states are metastable. In Sec. IV we
study the thermal melting of the bilayer crystal. We derive
the classical melting temperature Tm via a modified two-
dimensional Lindemann criterion. We find that the tempera-
ture Tm behaves nonmonotonically with increasing interlayer
distance.

II. GROUND AND EXCITED STATES

We consider a system of classical dipoles confined into
two planes along the �x ,y� direction separated by a distance

l along z. We focus on the situation where the dipole mo-
ments di of the particles are aligned perpendicular to the
planes, i.e., along z, and where one has the same density n of
dipoles in each layer; see Fig. 1�a�. The interactions between
two dipoles is given by their dipole-dipole interactions
V�r�=d2�1−3z2 /r2� /r3, where r= �r��0 is their distance and
z=r ·ez is their interlayer distance. We note that the dipole-
dipole interactions are long range, i.e., decay like 1 /r3 and
are anisotropic in space. At zero temperature the system is in
a crystalline configuration, where the particles in each layer
form a 2D crystal, and the relative position of the particles is
correlated by the long-range dipole-dipole interaction. We
denote the 2D position of the dipoles within the upper
�lower� layer by R+,j �R−,j�, which we parameterize by

R�,j = j1a1 + j2a2 � c/2, �1�

where the integers j��j1 , j2� label the jth particle in each
layer, a1 and a2 are the basis vectors of the periodic structure
with density n, and c is a two-dimensional vector accounting
for a relative in-plane displacement of the two structures; see
Fig. 1�a�.

The interactions are given by

V =
1

2 �
�=�

�
j�j�

d2

�R�,j − R�,j��
3 + �

j,j�

d2��R+,j − R−,j�2 − 2l2�
��R+,j − R−,j�2 + l2�5/2 ,

�2�

where the first �second� term describes the intralayer �inter-
layer� interactions. Since the intralayer interactions do not
depend on the interlayer separation l, it is convenient to split
the energy per dipole, E, into its intra- and interlayer parts as
E=V /2N=E0+EI. By making use of the translational invari-
ance of the infinite system, the two contributions read

E0 =
1

2 �
j�0

d2

�R j�3
, �3a�

EI =
1

2�
j

d2��R j + c�2 − 2l2�
��R j + c�2 + l2�5/2 , �3b�

where R j �R�,j −R�,0= j1a1+ j2a2 denote the relative �2D�
positions of the dipoles in each layer. Given the slow con-
vergence of the sum in real space involved in Eqs. �3a� and
�3b�, we use the Ewald summation method to obtain an ex-
pression for E involving rapidly convergent sums. The ex-
plicit derivation is given in Appendix A. We here provide
only the derived expressions for E0 and EI, which read

E0

d2 = 	n�
j
� 4
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e−�Gj�

2/4
2
− 2�G j�erfc� �G j�

2
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2
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2�Rj�
2

�R j�2

 −

4
3

3�	
, �4a�

FIG. 1. �Color online� �a� Sketch of the system setup depicting
the dipolar bilayer system: The dipoles are oriented along the z
direction, d=dez, and confined to two �x ,y� planes separated by an
interlayer distance l along the z direction. The intralayer dipole-
dipole repulsion gives rise to a crystalline structure in each layer
with basis vectors ai, here illustrated by two hexagonal structures
with an in-plane displacement c. �b� Various possible equilibrium
geometries for the bilayer crystal, shown as a projection onto the
�x ,y� plane. From left to right: a matching hexagonal �MH� con-
figuration, a one-component hexagonal �OCH� configuration, a zig-
zag rectangular configuration with aspect ratio a2 /a1 �ZR�, and a
zigzag square �ZS� configuration. The position of the dipoles and
their nearest-neighbor links in the upper �lower� layer are shown by
solid �dashed� circles and lines, respectively. A detailed summary of
the lattice parameters is given in Table I.
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with �R̃ j����R j +c�2+ l2�1/2. In Eqs. �4a� and �4b�, n denotes
the intralayer density and G j are the 2D reciprocal vectors of
a single layer, which are parametrized by G j = j1b1+ j2b2 in
terms of the primitive translation vectors of the reciprocal
lattice b1 and b2. The quantity 
�0 is an �arbitrary� inverse
length, for which a convenient choice is the inverse of the
mean particle separation, i.e., 
=1 /r0=�	n.

In order to determine the ground-state configuration, in
the following we calculate the energy of a number of pos-
sible crystal configurations. Motivated by the fact that the
ground state for a single layer is given by a hexagonal lattice
structure, we first consider a hexagonal structure in each
layer with the two structures displaced by c; see Fig. 1�a�.
We find that for an arbitrary interlayer separation l, the mini-
mal energy is attained for c=0 �modulo the lattice constant�.
This is also what one would intuitively expect, since the
closest dipoles in different layers tend to attract each other,
which leads to the locking of the relative positions of the two
layers. The attained “matching” hexagonal �MH� structure is
illustrated in Fig. 1�b� and its basis and reciprocal vectors are
listed in Table I, together with three other �metastable� con-
figurations detailed below. In Fig. 2 we plot the energy per
particle, E�MH�, attained for the MH configuration at a fixed
density n as a function of the dimensionless interlayer sepa-
ration �� l / ��	r0�, given by the interlayer distance in units
of the mean particle separation �up to a constant 1 /�	�, as a
solid line. We notice that for large interlayer separations, �
�1, the ground-state energy approaches the value corre-
sponding to that for a single hexagonal �SH� layer in its
ground state, i.e., E�MH���→��=E�SH��4.443d2n3/2. In the
opposite limit, ��1, the energy is dominated by the large
attraction between the two layers, E�MH����1���−1 /�3+2

�4.443�d2n3/2, which diverges as −1 / l3 for ł→0, due to
the strong attraction of the closest dipoles in different layers.
We remark that the latter corresponds to an unphysical re-
gime for typical molecular systems.12 In fact, at these short
distances, the required depth of the optical trapping potential
for realizing a 2D layer becomes unreasonably large. More-
over, one expects short-range interactions in the form of,
e.g., van der Waals interactions as well as the core repulsion,
to dominate the interactions at these small distances.44 These
latter effects have been neglected in our model; cf. Eq. �2�.
However, we notice that here the physically relevant quantity
is �, and the limit �→0 can be approached by decreasing the
density of dipoles n while keeping l fixed.

In order to confirm that the MH configuration is the
ground state, we compare its energy to those of a number of
other �intuitively motivated� configurations.45 As a first alter-
native configuration, we consider a “one-component” hex-
agonal �OCH� structure, which is obtained by removing ev-
ery second dipole in each layer in a staggered way and
rescaling the relative density. The OCH configuration is il-
lustrated in Fig. 1�b�, and its basis and reciprocal vectors are
summarized in Table I. The attained energy E�OCH� is plotted
in Fig. 2 as a function of � as a dashed-dotted line, and we

TABLE I. Lattice parameters of the four considered configurations: the MH, the OCH, the ZR, and the
ZS. From left to right: a1 and a2 are the primitive vectors, c is the interlattice displacement vector, b1 and b2

are the primitive translation vectors of the reciprocal lattice, and n is the density of each layer. We introduced
the vector notation �x ,y��xex+yey for the two-dimensional components; the lattice constant is a��a1� and
a2 /a1 denotes the aspect ratio for the ZR configuration.

Lattice a1 /a a2 /a 2c b1a /2	 b2a /2	 na2

MH �1,0� �1 / 2 , �3 / 2 � 0 �1, −1 / �3 � �0, 2 / �3 � 2 / �3

OCH �1,0� �0,�3� �1,�3� �1,0� �0, 1 / �3 � 1 / �3

ZS �1,0� �0,1� �1,1� �1,0� �0,1� 1

ZR �1,0� �0, a2 / a1 � �1, a2 / a1 � �1,0� �0, a1 / a2 � a1 / a2
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FIG. 2. �Color online� The energy per dipole E for a fixed den-
sity n as a function of � for three different lattice configurations:
MH �solid line�, OCH �dashed-dotted line�, and ZS �dotted line�.
The inset is a blowup of the excited-state energies in the region of
small interlattice separation, 0���0.3, showing a crossing of the
OCH and ZS energies around ��0.12.
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notice that it exceeds that of the MH configuration. The label
OCH has been chosen for this configuration, as it resembles
a hexagonal lattice for a single component when viewed
from above. Accordingly, in the limit of vanishing interlattice
separation, the energy of the OCH configuration tends to that
of a single hexagonal layer �with a double density�, i.e.,
E�OCH���=0��4.443d2�2n�3/2�12.576d2n3/2.

As a second alternative configuration, we consider a “zig-
zag” square �ZS� structure, where the dipoles in each layer
form a square lattice and the two layers are shifted with
respect to each other as illustrated in Fig. 1. The basis and
reciprocal vectors for the ZS structure are given in Table I.
The energy for the ZS structure, E�ZS�, is shown in Fig. 2 as
a dashed line. The figure shows that for large � the energy of
the ZS configuration exceeds the MH energy but it is smaller
than the OCH energy, while at small � the energies of the ZS
and OCH configurations become comparable. The inset of
Fig. 2 is a blowup of the excited-state energies in the region
0���0.3. From the inset, we observe that the two energies
E�OCH� and E�ZS� actually cross at �=�0�0.12 and for �
��0 the OCH structure is energetically favored over the ZS
one.

The excited-state configurations OCH and ZS can be in-
terpolated smoothly by “stretching” the lattice, which in gen-
eral leads to a zigzag rectangular �ZR� structure with a vari-
able aspect ratio a2 /a1 in each layer. The ZR structure is
illustrated in Fig. 1�b� and its basis and reciprocal vectors are
listed in Table I. In order to find the optimal ZR configura-
tion, we minimize the energy as a function of the free pa-
rameter a2 /a1. The obtained aspect ratio a2 /a1 for the opti-
mal ZR configuration is shown in the inset of Fig. 3, and we
notice that the resulting structure coincides with the OCH
and ZS configurations at �=0 and ��0.17, respectively. The
energy obtained for the optimal ZR configuration, E�ZR�, is
plotted as a dashed line in Fig. 3 in the region 0.05��
�0.17, along with the ones obtained for the OCH �dashed-
dotted line� and ZS structures �dotted line�. The figure shows
that E�ZR� equals E�OCH� and E�ZS� at �=0 and ��0.17, re-

spectively, while it is lower in the parameter region in be-
tween.

The results above are consistent with the MH configura-
tion being the ground state of the system for all �, due to the
attraction between particles in the two layers �separated by
r��3l�. This in contrast to the situation occurring for Cou-
lomb bilayer systems, where the repulsion between particles
in the different layers leads to a change in the ground-state
configuration depending on the ratio of the interlayer sepa-
ration to the mean intralayer spacing.45 However, we notice
that analogous �smooth� transitions between different con-
figurations occur here between excited-state structures,
which will be shown below to be metastable. These struc-
tures may in principle be prepared using properly designed
in-plane optical lattice potentials, as argued below.

III. DYNAMICAL PROPERTIES

In this section, we study the phonon spectra for those
equilibrium lattice configurations, which we found in Sec. II.
Thereby we make use of the harmonic approximation of the
lattice excitations and determine the stability �metastability�
of the obtained configurations for the ground �excited� states
under small fluctuations.

In order to obtain the excitation spectra for the various
lattice configurations, we consider the dynamical matrix
MD�q�, whose eigenvalues are the square of the phonon
frequencies.46 We notice that the bilayer configurations
above correspond to a �single 2D� Bravais lattice with a unit
cell given by two molecules, one in the upper layer and one
in the lower layer. Thus MD�q� is here a 4�4 matrix,

MD�q� =�
M++

xx M++
xy M+−

xx M+−
xy

M++
xy M++

yy M+−
xy M+−

yy

M+−
xx M+−

xy M−−
xx M−−

xy

M+−
xy M+−

yy M−−
xy M−−

yy
 , �5�

where the superscript �=x ��=y� refer to a displacement
along x �y� and the subscript �=+ ��=−� refer to the com-
ponents in the upper �lower� layer. The matrix elements in
Eq. �5� read

M��
�� �

1

m
�D++

�� �0� − D++
�� �q� + D+−

�� �0�� , �6a�

M+−
�� �

1

m
�− D+−

�� �q�� , �6b�

where m is the mass of the dipoles. The quantities D+�
�� �q� are

defined as

D+�
�� �q� = �

j

e−iq·�R0,+−Rj,������V0+,j��r = 0� , �7�

with V0+,j��r� as the two-body interaction potential between
the dipole at position 0 in layer + and the dipole j in layer �.
At q=0 the quantities D+�

�� �q� for �=+ ��=−� correspond to
the intralayer �interlayer� force constants.

Using the Ewald summation method �see Eqs. �A9� and
�A17� in Appendix A�, we can rewrite the sum in Eq. �7� into
the following rapidly convergent forms:
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FIG. 3. �Color online� The energy per particle, E, as a function
of � for the OCH �dashed-dotted line�, the optimal ZR �dashed line�,
and the ZS configurations �dotted line�, showing the transitions:
OCH→ZR→ZS with increasing �. Inset: The aspect ratio a2 /a1 for
the ZR configuration as a function of �.
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D++
�� �q� = − �

j

�q + G j���q + G j���� �G j + q�
2


,0	 +
8
5

5�	
���

+ �
j�0

lim
r→0

�����1��R j + r�� , �8a�

D+−
�� �q� = − �

j

�q + G j���q + G j��eiGj·c�� �G j + q�
2


,
l	
+ �

j

e−iq·�Rj+c� lim
r→0

�����2��R̃ j + r�� , �8b�

where ��� is the Kronecker delta and where we used the
notation �q+G j���e� · �q+G j� for the component in the di-
rection � of the two-dimensional �reciprocal� vectors. The
functions ��x ,y�, �1�x�, and �2�x� in Eqs. �8a� and �8b� are
given by

��x,y� =
4


�	
e−x2−y2

+ �
�

��2�
xe�2xyerfc�x � y� , �9a�

�1�x� =
erfc�
x�

x3 +
2
e−
2x2

�	x2
, �9b�

�2�x� =
erfc�
x�

x3 +
2
e−
2x2

�	x2

− 3l2� erfc�
x�
x5 +

2
�3 + 2
2x2�e−
2x2

3�	x4 
 . �9c�

For the configurations in Fig. 1, the complex Hermitian
matrix MD�q� in Eq. �7� can be transformed into a real and
symmetric matrix. This is achieved by first applying the uni-
tary transformation MD�q�=UMD�q�U†, with U as a 4�4
matrix and defined as

U =
1
�2

� I2 iI2

iI2 I2
	 , �10�

with I2 as the 2�2 identity matrix. This transformation
brings the dynamical matrix into the symmetric form

MD�q� = �M++ + Im�M+−� Re�M+−�
Re�M+−� M++ − Im�M+−�

	 , �11a�

with

M+� � �M+�
xx M+�

xy

M+�
xy M+�

yy 	 . �11b�

That the matrix MD�q� is real now stems from the fact that
Im�M+−� vanishes for a lattice with inversion symmetry,45,47

which is the case for all lattice configurations considered in
this work.

For each quasimomentum q, diagonalizing MD�q� pro-
vides the square of the phonon frequencies, �
�q�2 �with 1
�
�4�, which correspond to the four distinct phonon
modes of the bilayer system. Within the harmonic approxi-
mation, the stability of the various lattice configurations is
linked to the sign of the eigenvalues of MD�q�. That is, a

lattice configuration is stable if all four eigenvalues of
MD�q� are positive for all quasimomenta q, i.e., �
�q�2�0,
while it is unstable if one �or more� of the four eigenvalues is
negative for a given quasimomentum q; cf. �
�q�2�0.

A. Ground-state configuration

In this subsection we calculate the phonon spectrum for
the ground-state configuration MH as a function of the inter-
layer separation � by using the techniques described above.
As expected, we find both acoustic and optical modes, with
the latter related to out-of-phase vibrations of particles in
different layers. We show that the longitudinal and transverse
sound velocities of the acoustic modes show a nonmonotonic
dependence on �, which is linked to the anisotropic nature of
the dipole-dipole interaction. The picture emerging from
these studies is one where the bilayer structure behaves for
vanishing interlayer separations ��1 as a single 2D crystal
of particles with double mass and double dipole moment,
while for ��1 the two layers behave as independent 2D
crystals. Within the harmonic approximation inherent to the
present discussion, the transition between these two situa-
tions occurs approximately for interlayer distances such that
the nearest-neighbor interlayer interaction switches from re-
pulsive ���1� to attractive ���1�.

Figure 4 shows the phonon dispersion relations for the
MH lattice configuration along the high-symmetry directions
in the Brillouin zone for three values of �, i.e., �=0.1, 0.7,
and 100 �solid, dashed, and dashed-dotted lines, respec-
tively�. The frequencies are in units of the characteristic pho-
non frequency �0=�d2n5/2 /m. The symmetry points �, X,
and J are depicted in the inset. The figure shows that for �
→� there are two phonon branches. Each one of these
branches is doubly degenerate, corresponding to independent
longitudinal- and transverse-acoustic phonon modes of the
two layers. We find that, as expected, the modes exactly
match those of a single layer, confirming that in the limit �
→� the two layers behave independently. For finite � the
dipole-dipole interaction couples the two layers, and lattice
vibrations in the two layers become correlated. Accordingly,
the figure shows that for �=0.7 �dashed lines� and �=0.1
�solid lines�, the phonon modes develop separate acoustic
and optical branches. Since the MH lattice structure can be
represented as the repetition of a basis cell comprising two
particles, one per layer, stacked on top of each other, the
optical modes are easily understood as arising from out-of-
phase vibrations of the dipoles in each basis cell. The figure
shows that the optical frequency of vibration increases with
decreasing interlayer distance, and the bandwidth of the op-
tical branch tends to shrink �note that in the figure the scales
for the optical modes for �=0.7 and �=0.1 are different�. In
the �unphysical� limit �→0, the phonon spectrum reduces to
one where there is only one, i.e., nondegenerate,
longitudinal-acoustic and one transverse-acoustic mode,
while the optical branches are shifted to infinitely large fre-
quencies. This observation is consistent with the system be-
having as a single layer of dipoles with double mass and
double dipole strength, arranged in a hexagonal configura-
tion �see below�.
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Figure 4 shows that the acoustic branches for �=0.7 have
lower frequencies than the corresponding branches for �
=0.1 and �→�, indicating a nonmonotonic dependence of
the frequencies on �. In order to better investigate this point,
in Figs. 5�a� and 5�b� we plot the longitudinal and transverse
sound velocities, vLA= ���LA /�q�q=0 and vTA= ���TA /�q�q=0,
with �LA and �TA as the frequencies of the longitudinal- and
transverse-acoustic modes, respectively. We find that for �
�1, the longitudinal and transverse sound velocities tend to
vLA�2.544�0 /�n and vTA�0.768�0 /�n, respectively.
These values correspond to the sound velocities of a mono-
layer hexagonal lattice configuration, consistent with the ob-
servation above that for ��1 the crystal vibrations in the
two layers become independent. In the opposite limit, �→0,
we find that the sound velocities are larger than those above
exactly by a factor of �2. A simple comparison with the
characteristic phonon frequency �0=�d2n5/2 /m shows that
this �2 factor is consistent with the system behaving as a
single layer of dipoles of mass 2m and dipole strength 2d.

Figure 5 shows that the dependence of the sound veloci-
ties on � is nonmonotonic. In particular, the minima for vLA
and vTA occur at �=�0�1 and 0.64, respectively �see Appen-
dix B�. This nonmonotonic behavior is linked to the aniso-
tropic character of the dipole-dipole interaction. In fact, for
�→� the two layers behave as independent hexagonal crys-

tals. For finite �, the interlayer interactions couple the two
layers. This coupling, which is responsible for the formation
of the optical band, splits the degeneracy of the phonon fre-
quencies, lowering the acoustic sound velocity, which is as-
sociated with a softening of the crystal; see Fig. 4. For �
�1 the optical and acoustic branches are well separated,
corresponding to the formation of a crystal of tightly bound
pairs of dipoles. For �→0 the sound velocity is �2 larger
than at �→�, as discussed above, and this determines the
appearance of a minimum in between. We observe that the
value ��1 roughly corresponds to the interlayer distance at
which the interaction of a dipole at R+,j with the next-nearest
neighbor in the opposite layer at position R−,j� switches from
attractive to repulsive. We remark that, although the crystal-
line structure is softened for finite �, the sound velocity re-
mains always finite. This is due to the anisotropic character
of the dipole-dipole interactions, which ensures that the MH
configuration is always the stable ground-state configuration.

Figure 6 shows as a solid line the optical frequencies �op
as a function of � in logarithmic scale at the � point, where
the two optical frequencies are degenerate. We notice that for
��0.7 the frequencies decay exponentially with increasing �
as ln��op /�0��3.919−3.441� �cf. dotted line�, while they
diverge as a power law ln��op /�0��0.716–2.502 ln��� for
��0.7 �cf. dashed line�. This change in behavior is another
manifestation of the crossover from two independent layers
to a single crystal of paired dipoles.

B. Excited-state configurations

In this subsection we study the metastability of the
excited-state configurations OCH, ZS, and ZR introduced in

FIG. 4. �Color online� Phonon dispersion curves �
�q� for the
MH lattice configuration in units of �0=�d2n5/2 /m for �=0.1 �solid
lines�, �=0.7 �dashed lines�, and �→� �dashed-dotted lines�. The
frequencies are presented along the high-symmetry directions in the
Brillouin zone. The high-symmetry points �, X, and J are depicted
in the inset. Note that the different axis scaling for the high-
frequency regime ��6�0.

(a)

(b)

FIG. 5. Sound velocities for the MH lattice configuration as a
function of the dimensionless layer separation �: �a� Longitudinal
sound velocity vLA and �b� transverse sound velocity vTA, in units
of �0 /�n.
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Sec. II by calculating the phonon modes for each configura-
tion. For a given interlayer distance �, within the applicabil-
ity of the harmonic approximation, regions of metastability
and instability for the above configurations correspond to
real and imaginary values of the computed phonon frequen-
cies, respectively. By analyzing the sound velocities of the
phonon excitations, we find that the instability of the OCH
and ZS crystalline structures is associated with the vanishing
of the transverse-acoustic branch of the phonon modes in the
directions �X and �M. We thus derive a stability diagram for
the low-lying excitations of the system as a function of �; see
below. This is interesting, since in principle these excited-
state configurations may be realized, e.g., by first trapping
cold polar molecules in optical lattices with the same geom-
etry as OCH and ZS crystals, increasing the dipole-dipole
interactions using external fields, forming interaction-
induced OCH and ZS crystals, and finally adiabatically re-
moving the lattice potential.

Panels �a� and �b� of Fig. 7 show the square of the phonon
frequencies for the OCH and ZS lattice configurations, re-
spectively, for a few values of � and in units of �0

2

=d2n5/2 /m. The phonon spectra in Fig. 7 are shown along the
high-symmetry directions in reciprocal space, with symmetry
points labeled in the insets. The figure shows that for certain
values of �, the square of the phonon frequencies becomes
negative, �2�0, signaling the instability of the correspond-
ing crystalline structure for the given value of �. In panels �a�
and �b�, regions of metastability are present for �=0 and �
=0.2, respectively. In fact, we determined numerically that
the OCH configuration in panel �a� is metastable for �
�0.170, while the ZS configuration in panel �b� is meta-
stable in the range 0.166���0.247. We notice that in these
regimes where �2�0, the system in the OCH and ZS con-
figurations is metastable, since the associated crystalline
structures are excited states of the system. By analyzing the
sound velocities of the phonon excitations, we found that the
instability of the OCH and ZS crystalline structures is asso-
ciated with the vanishing of the transverse-acoustic branch of
the phonon modes in the directions �1,1� and �1,0�, as de-
tailed below.

Panels �a� and �b� of Fig. 8 show the sound velocities of
the transverse-acoustic �TA� and longitudinal-acoustic �LA�
modes, respectively, for the OCH, ZS, and ZR configurations
as functions of � in the range of stability of each configura-
tion. In the figure, the continuous and dashed lines corre-
spond to the �1,0� and �1,1� directions, respectively. Panel �a�
shows that the TA mode for the OCH configuration vanishes
in the �1,0� direction at ��0.170 �see also Fig. 7�a��. The TA
mode for the ZS configuration vanishes in the �1,1� and �1,0�
directions for ��0.166 and ��0.25, respectively. In addi-
tion, panel �b� shows that the longitudinal modes for all three
configurations soften with increasing �. The transverse and
longitudinal sound velocities for the ZR configuration inter-
polate between those of the OCH and ZS configurations �see
Figs. 8�a� and 8�b��, coinciding with those at �=0 and �
�0.166, respectively.

Figure 9 summarizes the regions of stability for the MH
configuration, which is the ground-state for any ��0, the
OCH and the ZS configurations. We remark that the values
�=0.166, 0.170, and 0.247 have been obtained numerically,
in the harmonic approximation for the phonon spectrum.
Since the harmonic approximation is bound to break down
around any transition points between various configurations,
the numerical values 0.166 and 0.170 should be taken with

FIG. 6. �Color online� Optical frequencies �op �in logarithmic
scale in units of �0� at the � point for the MH lattice configuration
as a function of � �solid line�, along with the approximations
ln��op /�0��0.716–2.502 ln � for ��0.7 �dashed line� and
ln��op /�0��3.919−3.441� for ��0.7 �dotted line�.

(a)

(b)

FIG. 7. �Color online� Square of the phonon frequencies, �

2 , in

units of �0
2=d2n5/2 /m �a� for the OCH configuration at �=0 �solid

lines�, �=0.2 �dashed lines�, and �→� �dashed-dotted lines� and
�b� for the ZS configurations at �=0.1 �solid lines�, �=0.2 �dashed
lines�, and �→� �dashed-dotted lines�. The frequencies are shown
along the high-symmetry directions in reciprocal space for each
lattice configuration. The high-symmetry points �, X, and M are
depicted in the insets.
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caution and simply interpreted as indicative of the transition
region.

For completeness, in Fig. 10 we show the optical frequen-
cies at the � point as a function of � for the OCH, ZR, and
ZS lattice configurations. As expected, we find that the fre-
quencies corresponding to the ZR configuration interpolate
between those of the OCH and ZS configurations. In particu-
lar, they become degenerate around ��0.170, where the ZS
configuration becomes stable. This degeneracy is a natural
consequence of the fact that the aspect ratio a2 /a1 of the ZS
configuration is 1. We notice that the different behaviors of
the optical frequencies may be used to distinguish experi-
mentally the various metastable structures, when initially

prepared in tailored optical lattice potentials, as discussed at
the beginning of this subsection.

IV. CLASSICAL MELTING

In this section we discuss the classical melting tempera-
ture of the bilayer system, as obtained in the harmonic ap-
proximation for the excitations of the crystal using a �modi-
fied� Lindemann criterion. The latter states that for a given
configuration, the melting occurs when the mean relative dis-
placement between neighboring sites becomes on the order
of the mean interparticle distance r0=1 /�	n �see Table I for
the configurations in Fig. 1�.48 This reads

���u�R� − u�R + r��2�
r0

= �m, �12�

where ��u�R�−u�R+r��2� is the relative mean square dis-
placement, u�R� and u�R+r� are the displacement vectors at
site R and at its nearest-neighbor site R+r, � � is a thermal
average, and �m�1 is a parameter which in general has to be
determined numerically.

The left-hand side of Eq. �12� is computed in the har-
monic approximation for the phonons as follows: Each par-
ticle in the bilayer structure has two different kinds of nearest
neighbors: in plane and out of plane. Thus, in analogy to the
Coulomb case in Ref. 45, we define the intralayer ��u++�
and interlayer ��u+−� correlation functions �see Appendix C�
as

�u++ =
1

S+
�

�=x,y
�

h=1, . . .,S+

��u�
+�0� − u�

+�h��2�

=
2kBT

NS+m
�
q,j

1

�2�q, j�
���x

+�q, j�2 + �y
+�q, j�2�

��1 − cos�q · Rh
+��� , �13a�

(a)

(b)

FIG. 8. �Color online� �a� Longitudinal sound velocities vLA and
�b� transverse sound velocities vTA in units of �0 /�n along the �1,0�
�solid lines� and the �1,1� �dotted lines� directions for OCH, ZR, and
ZS lattice configurations. The vertical dotted line denotes the
boundary between ZR and ZS. The gray shading corresponds to the
transition region where the harmonic approximation for the phonon
excitations may become inadequate.

OCH

ZS

MH

0.166 0.1700.0

0
+

0.247
��

FIG. 9. Approximate regions of stability for the MH, ZS, and
OCH configurations as a function of �.
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�
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ZR

ZS

FIG. 10. �Color online� Optical frequencies �op in units of �0 at
the � point for the OCH, ZR, and ZS lattice configurations. The
vertical dotted line denotes the boundary between ZR and ZS. The
gray shading corresponds to the transition region where the har-
monic approximation for the phonon excitations may become
inadequate.
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�u+− =
1

S−
�

�=x,y
�

h=1, . . .,S−

��u�
+�0� − u�

−�h��2�

=
kBT

NS−m
�
q,j

1

�2�q, j�
���x

+�q, j�2 + �x
−�q, j�2 + �y

+�q, j�2

+ �y
−�q, j�2� − 2��x

+�q, j��x
−�q, j�

+ �y
+�q, j��y

−�q, j��cos�q · Rh
−�� . �13b�

Here S� is the number of nearest-neighbor dipoles in layer
�=�, u�

��h� is the �th component of the displacement of a
particle at position h in the layer �, ��

��q , j� is the �th com-
ponent of the eigenvector of the jth mode at point q in the
Brillouin zone of the sublattice in layer �, and Rh

� is the
relative vector connecting one particle to its hth-nearest
neighbor in the same ��=+� or opposite ��=−� layers. We
notice that the number of nearest neighbors, S�, and their
distance depends on the considered lattice configuration �see
Fig. 1� and �. In particular, Fig. 11 shows that in the relevant
case of the ground-state configuration MH �see Sec. ??? be-
low�, the number of in-plane nearest neighbors is 6, while
that of out-of-plane nearest neighbors is 7.

The correlation ��u�R�−u�R+r��2� in Eq. �12� is now
computed as

��u�R� − u�R + r��2� = �u++ + f�l��u+−, �14�

where the function f�l� describes the influence of lattice vi-
brations in one layer on the lattice vibrations in the opposite
layer, and it is defined as

f�l� =
1

�1 + �l2�5/2 +
− 3�l2

�1 + �l2�7/2 . �15�

Here, the geometric parameter � can be obtained from Table
I, and it reads �= �a2�−1 and �= ��c�2�−1 for the MH and zig-
zag lattice configurations, respectively. This expression for
f�l� is chosen to be proportional to the in-plane part of the
force between two nearest-neighbor dipoles in opposite lay-
ers and it satisfies the conditions

lim
l→0

f�l� = 1 and lim
l→�

f�l� = 0,

where the latter condition is due to the fact that vibrations in
the two layers are independent for infinite interlayer separa-
tions.

Melting of the ground-state configuration

In this subsection we determine the classical melting tem-
perature Tm of the ground-state crystal configuration MH as a
function of � by using the modified Lindemann criterion in-
troduced above. We find a nonmonotonic dependence of Tm
on �, which we attribute to the anisotropic nature of the
dipole-dipole interactions. This is interesting since for certain
temperatures it is associated with a re-entrant melting behav-
ior in the form of solid-liquid-solid-liquid transitions.

Figure 12 shows the melting temperature Tm as a function
of �, as calculated from the Lindemann criterion with �m
=0.23 within the harmonic approximation for the phonon
modes. The precise value of �m should in principle be ob-
tained numerically, e.g., using molecular-dynamics simula-
tions. In the absence of such a computation for a classical
bilayer crystal, the value of �m=0.23 has been chosen in
analogy to the one obtained in Ref. 30 for the quantum melt-
ing transition from a single-layer crystal of bosonic dipoles
into a superfluid using diffusion Monte Carlo techniques.

FIG. 11. �Color online� Illustration of the dipole configuration
for the MH structure leading to the modified Lindemann criterion.

FIG. 12. �Color online� �a� Melting temperature Tm as a function
of � for the MH lattice configuration �solid line�. The unit T0

�0.066d2 /a3 corresponds to the melting temperature of a single-
layer crystal, as computed from Eq. �12� with �m=0.23. The dashed
line is a guide to the eye. �b� Melting temperature Tm as a function
of � for particles interacting via the potential Vij

int in Eq. �16�. Here,
� is the strength of the attractive part of the potential �see text�, with
�=1 corresponding to the dipole-dipole interaction of panel �a�. The
dotted line is a guide to the eye.
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Using this value of �m in Eq. �12�, we find that for ��1 the
classical melting temperature of the bilayer crystal tends to
the value T0�0.066d2 /a3. By construction, the latter corre-
sponds to the classical melting temperature of a single hex-
agonal crystal as computed in the harmonic approximation
discussed above. We here notice that the obtained value of T0
is on the order of the actual one, T0

num�0.089d2 /a3, for a
classical single-layer crystal, as obtained numerically by
molecular-dynamics simulations.49 Since the spirit of the
Lindemann criterion is that of a qualitative estimate of the
transition point, in the following we will be content with the
value T0.

For ��1 the figure shows that the melting temperature
tends to Tm=4T0. This is consistent with the picture of a
hexagonal crystal made of paired dipoles with dipole
strength d�=2d, as discussed in Sec. III A. Interestingly, the
figure shows that Tm has a nonmonotonic dependence on �
around ��1. In particular, the Tm-vs-� curve has a local
maximum and a local minimum at ��1 and ��0.6, respec-
tively. As noticed in Sec. III A, this region of � values cor-
responds to the distance at which the dipole-dipole interac-
tion between a particle in one layer and its nearest neighbor
in the opposite layer changes sign from attractive to repul-
sive �e.g., d0

− and dj
+ in Fig. 1, respectively, with 1� j�6�.

In order to check that the nonmonotonicity is in fact con-
nected to the anisotropic nature of the dipole-dipole interac-
tion, in Fig. 12�b� we have plotted the melting temperature
for an artificial system of particles where the strength of the
attractive part of the dipole-dipole interaction can be tuned.
Thus the particles interact via a potential of the form

Vij
int = d2� 1

�rij�3
+ �

− 3l2

�rij�5
	 , �16�

with � as a constant, 0����, and �rij� as the interparticle
distance. We find that the nonmonotonic character of the
curve is enhanced for ��1, while it tends to disappear for
��1 and in particular it vanishes for ��0.9. In the limit �
→0 of purely repulsive interactions �not shown�, the system
resembles the Coulomb case in Ref. 45, and accordingly we
find that the MH lattice ceases to be the ground-state con-
figuration.

The observations above confirm that the re-entrant �non-
monotonic� behavior of Tm as a function of � is due to the
attractive character of the dipole-dipole interactions. This in-
dicates that it is possible to alternate solid and liquid phases
by changing the interlayer distance or the density of the mol-
ecules.

V. CONCLUSION

In this work we have studied the structure, the stability,
and the melting of a classical bilayer system of dipoles, po-
larized perpendicular to the layers, as a function of the inter-
layer distance and the density of dipoles in each layer. Using
the Ewald summation technique, we have computed the
ground-state energy and the phononic spectrum of a few
physically motivated lattice configurations, finding that the
ground state is always the matching hexagonal crystal con-
figuration, where two triangular lattices are stacked on top of

each other, as expected. Higher-energy configurations have
been found to be metastable in different regimes of interlayer
distances and dipole densities. These configurations may be
realized using polar molecules trapped in optical lattices of
properly chosen geometry.

The main result of this work is that the anisotropic nature
of the dipole-dipole interaction potential profoundly affects
the dynamical properties of the bilayer system of dipoles and
its melting behavior. In fact, on one hand we have found that
the attractive part of the potential determines a nonmono-
tonic dependence on � of the longitudinal and transverse
sound velocities in the ground-state configuration. On the
other hand, we have shown that the classical melting tem-
perature of the bilayer crystal has an interesting re-entrant
behavior as a function of �. This re-entrant behavior is due to
the anisotropy of the dipole-dipole interaction, and it entails
that it is possible to alternate various crystalline and liquid
phases by changing � at a fixed temperature.

The present analysis is motivated by the recent develop-
ments in the physics of cold molecular gases, which may
provide a physical realization of these systems. In particular,
the classical melting of the bilayer crystalline phases may be
realized in the future in setups where cold polar molecules
are trapped in adjacent wells of a one-dimensional optical
lattice and their dipoles are polarized by a static electric field
oriented parallel to the optical lattice. Under appropriate
trapping conditions,12,29 the resulting in-plane dipole-dipole
interactions are purely repulsive, while interplane interac-
tions can be repulsive or attractive.

ACKNOWLEDGMENTS

The authors thank P. Zoller for stimulating discussions.
X.L. acknowledges the financial support by Eurasia-Pacific
Uninet and the kind hospitality provided by the University of
Innsbruck and IQOQI of the Austrian Academy of Sciences.
This work was supported by the National Natural Science
Foundation of China, the European Union project OLAQUI
�No. FP6-013501-OLAQUI� and the Austrian Science Foun-
dation �FWF�.

APPENDIX A: RAPIDLY CONVERGENT FORM
OF �0 AND �I

The direct numerical computation of sums over lattice
sites with long-range dipole-dipole interactions is in general
impractical. Thus in the following we transform each sum
into rapidly convergent forms using the Ewald method.45,50

The detailed techniques are shown in the following. For the
calculation of the rapidly convergent form of the energy, at
first we define the following two functions:

�0�r,q� = eiq·r�
j�0

e−iq·�Rj+r�

�R j + r�3
, �A1a�

�I�r,q� = eiq·r�
j
� eiq·�Rj+c+r�

�R̃ j + r�3
+

− 3l2eiq·�Rj+c+r�

�R̃ j + r�5
	

= �I1 − 3l2�I2, �A1b�

where
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�I1 = �
j

eiq·�Rj+c+r�

�R̃ j + r�3
, �A2a�

�I2 = �
j

eiq·�Rj+c+r�

�R̃ j + r�5
, �A2b�

with R j �R�,j −R�,0 and �R̃ j +r����R j +c+r�2+ l2�1/2. Then
E0 and EI can be obtained from

E0 = lim
r→0

d2�0�r,0� , �A3a�

EI = lim
r→0

d2�I�r,0� . �A3b�

We use the identity based on the integral representation of
the gamma function

1

x2s =
1

��s��0

�

ts−1 exp�− x2t�dt , �A4�

with s=3 /2,��3 /2�=�	 /2 for �0 and �I1, s=5 /2,��5 /2�
=3�	 /4 for �I2, and the 2D Poisson summation formula

�
j

exp�− �� + R j�2t − iq · �� + R j��

=
	

L2 t−1�
j

exp�iG j · ��exp�−
�G j + q�2

4t
	 , �A5�

where G j = j1b1+ j2b2 �with integers i , j� is the two-
dimensional vector in reciprocal lattice, L2=1 /n is the area
per primitive cell. Then �0�r ,q� can be expressed by

�0�r,q� =
	

L2�
j

ei�q+Gj�·r
2

�	
�

0


2

t−1/2 exp�−
�G j + q�2

4t
	dt

−
2

�	
�

0


2

t1/2e−�r�2tdt

+ �
j�0

e−iq·Rj
2

�	
�


2

�

t1/2e−�Rj + r�2tdt , �A6�

where 
 is a small positive number. After using the integra-
tion

�

2

�

t1/2 exp�− �x�2t�dt =
�	

2�x�3
erfc�
�x�� +


 exp�− 
2�x�2�
�x�2

,

�A7�

and

�
0


2

t−1/2 exp�−
�x�2

4t
	dt

= exp�−
�x�2

4
2	�2
 − exp� �x�2

4
2	�x��	 erfc� �x�
2


	
 ,

�A8�

where the expression contains the complementary error func-
tion erfc�z�=1−erf�z�= �2 /�	��0

ze−t2dt, we obtain the final
form of �0�r ,q�,

�0�r,q� =
	

L2�
j

ei�q+Gj�·r� 4


�	
exp�−

�G j + q�
4
2 	 − 2�G j + q�

�erfc� �G j + q�
2


	
 + �2
e−
2�r�2

�	�r�2
−

erf�
�r��
�r�3 


+ �
j�0

e−iq·Rj� erfc�
�R j + r��
�R j + r�3

+ � 2


�	
	 e−
2�Rj + r�2

�R j + r�2 
 .

�A9�

Similarly,

�I1 =
	

L2�
j

ei�q+Gj�·reGj·c
2

�	
�

0


2

t−1/2 exp� �G j + q�2

4t
− l2t	dt

+
2

�	
�

j

e−iq·�Rj+c��

2

�

t1/2 exp�− �R̃ j + r�2t�dt . �A10�

By replacing t with w−2, the first integration of above equa-
tion can be rewritten as

�
1/


�

2w−2 exp�−
�G j + q�2

4
w2 −

l2

w2	dw . �A11�

Using the integration

�
1/


�

w−2 exp�−
�x�2w2

4
−

y2

w2	dw

=
	

4y
�e−�x�yerfc� �x�

2

− 
y	 − e�x�yerfc� �x�

2

+ 
y	


�A12�

and Eq. �A7� we have the following form of �I1:

�I1 =
	

L2l
�

j

ei�q+Gj�·reiGj·c�e−�Gj+q�l erfc� �G j + q�
2


− 
l	
− e�Gj+q�l erfc� �G j + q�

2

+ 
l	
 + �

j

e−iq·�Rj+c�

�� erfc�
�R̃ j + r��

�R̃ j + r�3
+ � 2


�	
	 exp�− 
2�R̃ j + r�2�

�R̃ j + r�2

 .

�A13�

In the same way, we transform �I2 as

�I2 =
	

3L2l3�
j

ei�q+Gj�·r

�eiGj·c�−
4
l
�	

� exp�−
�G j + q�2

4
2 − 
2l2	
+ �e−�Gj+q�l � ��G j + q�l + 1�erfc� �G j + q�

2

− 
l	

+ e�Gj+q�l��G j + q�l − 1�erfc� �G j + q�
2


+ 
l	
�
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+ �
j

e−iq·�Rj+c�� erfc�
�R̃ j + r��

�R̃ j + r�5

+ � 2


3�	
	3 + 2
2�R̃ j + r�2

�R̃ j + r�4
e−
2�R̃j + r�2� , �A14�

where the integrations

�
1/


�

w−4 exp�−
�x�2w2

4
−

y2

w2	dw

=
1

8y3�− 4
y exp�−
�x�2

4
2 − 
2y2	
+ �	�e−�x�y��x�y + 1�erfc� �x�

2y
− 
y	

+ e�x�y��x�y − 1�erfc� �x�
2y

+ 
y	
� �A15�

and

�

2

�

t3/2 exp��x�2t�dt =
3�	

4�x�5
erfc�
�x��

+

�3 + 2
2�x�2�

2�x�4
exp�− 
2�x�2�

�A16�

are used. After simplifying, we obtain the rapid convergent
form of �I�r ,q� as

�I�r,q� =
	

L2�
j

ei�q+Gj�·reiGj·c� 4


�	
exp�−

�G j + q�2

4
2 − 
2l2	
− �G j + q��e−�Gj+q�l erfc� �G j + q�

2

− 
l	

+ e�Gj+q�l erfc� �G j + q�
2


+ 
l	
� + �
j

e−iq·�Rj+c�

�� erfc�
�R̃ j + r��

�R̃ j + r�3
+ � 2


�	
	 exp�− 
2�R̃ j + r�2�

�R̃ j + r�2

− 3l2� erfc�
�R̃ j + r��

�R̃ j + r�5
+ � 2


3�	
	3 + 2
2�R̃ j + r�2

���R̃ j� + r�4�

� exp�− 
2�R̃ j + r�2�
� . �A17�

Therefore, the rapid convergent forms of E0 and EI are ex-
pressed as Eqs. �4a� and �4b�.

APPENDIX B: INTERPRETATION OF THE MINIMA OF
SOUND VELOCITIES FOR MH CONFIGURATION

For understanding the minimum of the LA and TA modes
of the sound velocities of MH configuration, we define the
following functions:

Fxx
rx = lim

ux→0

�2EI

�ux
2 rx

2,

Fxx
ry = lim

ux→0

�2EI

�ux
2 ry

2,

Fyy
rx = lim

uy→0

�2EI

�uy
2 rx

2,

Fyy
ry = lim

uy→0

�2EI

�uy
2 ry

2, �B1�

where EI is the interaction potential between a dipole at ori-
gin and the dipoles in the opposite layer, ux�y� is the x�y�
component of the displacements of the origin dipole around
its equilibrium position, rx�y� is the x�y� component of the
distance between the origin dipole and the dipoles in the
opposite layer.

The first two plots in Fig. 13 describe Fxx
rx and Fyy

ry as
functions of �, which indicate that the direction of vibration
is along the direction of propagation. We find that the mini-
mum is located at the same value of � in the curves of Fxx

rx

and Fyy
ry as that in the plot of vLA �see Fig. 5�a��, where

�min�1. The remaining two plots of Fig. 13 show Fxx
ry and

Fyy
rx vs �, which express that the direction of vibration is

perpendicular to the direction of propagation, the value of �
for the minimum in this two curves is the same as that in vTA
�see Fig. 5�b��, where �min=0.64. Due to the intrinsic prop-
erty of interlayer dipole-dipole interaction, the four functions
above have minima at �min�1 and �min=0.64.

APPENDIX C: CORRELATION FUNCTIONS
FOR BILAYER SYSTEM

From the Fourier transformation, we know that the �th
component of the displacement vectors of a dipole at the
origin position in layer + and at the hth-nearest-neighbor
position in layer � are

FIG. 13. The quantities Fxx
rx , Fyy

ry , Fxx
ry , and Fyy

rx as functions
of �.
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u�
+�0� =

1
�N

�
q,j

c�
+�q, j���

+�q, j� ,

u�
��h� =

1
�N

�
q,j

c�
��q, j���

��q, j�exp�iq · Rh
�� , �C1�

where ��
��q , j� is the � component of the eigenvector of jth

mode at q point in the first Brillouin zone of the sublattice in
layer �=�. c�

��q , j� is the probability parameter of ��
��q , j�,

Rh
� is the relative position of the hth-nearest-neighbor dipole

in layer �. Making use of the relation �c�
��q , j�c�

���q� , j���
= �kBT /m�2�q , j���q,q�� j,j�, we can obtain the relative mean
square displacements between the two considered nearest
neighbors,

��u�
+�0� − u�

+�h��2� =
2kBT

Nm
�
q,j

1

�2�q, j�

�����
+�q, j�2��1 − cos q · Rh

+�� ,

�C2a�

��u�
+�0� − u�

−�h��2� =
kBT

Nm
�
q,j

1

�2�q, j�
����

+�q, j�2 + ��
−�q, j�2�

− 2���
+�q, j���

−�q, j��cos�q · Rh
−�� ,

�C2b�

where u�
+�0� and u�

+�−��h� are the � component of the original
and the hth-nearest-neighbor dipoles in the +�−� layer, m is
the mass of the dipoles, kB is the Boltzmann constant, ��q , j�
is the phonon frequency of jth mode at q point in the first
Brillouin zone. After the summation over the �th compo-
nents and over the nearest-neighbor sites, we can finally ob-
tain expressions �13a� and �13b�.
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